Skip to main content

Immune µBiomic

Immune Strength and Regulation Probiotic

An immune system probiotic containing Alimentum Labs’ patent-pending exclusive keystone species of probiotics. This unique blend of probiotics promote and regulate healthy immune responses while correcting the gut-immune axis.

  • Immunity

    Immunity

  • Gut

    Gut

  • Whole Body

    Whole Body

  • Brain

    Brain

Health Indications

  • Regulate Autoimmune Reactions
  • Resolve Persistent and Recurrent Infections
  • Promotes The Body’s Process of Elimination and Drainage
  • Supports a Diverse Microbiome
  • Reduce Inflammation
  • Address Inflammatory Conditions
  • Promotes Post-Antibiotic Recolonization

Instructions For Use

Take 1-2 capsules daily for 30 days with or without food. Refrigerate after opening to optimize shelf life.

We highly recommend Immune μBiomic be paired with its synergistic prebiotic formula, Immune Superfood, for unparalleled results and remarkable health benefits.

**Individual needs may vary; please consult your practitioner before altering the prescribed doses or protocols.

Product Description

Immune µBiomic - Product Description

The gut-immune axis is responsible for maintaining a delicate balance between immune activation and immune tolerance. In order to prevent chronic inflammation and autoimmune reactions, it must be able to respond to potential threats, like pathogens, through activation while also having a tolerance for harmless substances, such as food and beneficial commensal bacteria. Given its direct role in regulating the immune system, the gut-immune axis should be a primary focus when addressing immune health.1

Immune µBiomic - Product Description

Several common lifestyle and environmental factors directly harm the gut-immune axis, leading to imbalances in gut health and immune function, and thereby increasing autoimmune complications or infections. These factors include environmental toxins in the food system, a poor diet filled with processed food and artificial sweeteners, genetics, stress, poor quality or lack of sleep, sedentary lifestyle, and various
medications such as antibiotics, NSAIDS, and proton pump inhibitors.2

Probiotics are renowned for fostering gut well-being, with certain strains being especially adept at fortifying immune defenses. Immune μBiomic features a variety of these distinctive, research-backed probiotic strains that contribute to essential aspects of immune system wellness. Crafted after 15 years of research on human microbiomes and with the help of multiple microbiology facilities, Immune μBiomic introduces keystone species, or next-generation probiotics, that are exclusive to Alimentum Labs. Through the patent-pending probiotic blend that includes our unique probiotic species, which can only be found within our formulations, Immune μBiomic helps take control of persistent autoimmune conditions and pathogenic infections by modulating and correcting the gut-immune axis.

Key Elements and Features of Immune µBiomic

  • Autoimmune Regulation

    Probiotics play a vital role in autoimmune regulation through mechanisms such as immune modulation, inflammation regulation, maintenance of gut barrier integrity, induction of tolerance, and the regulation of regulatory T cells. By promoting a balanced immune response, preventing the gut barrier from being compromised, and supporting immune tolerance, Immune μBiomic contributes to mitigating autoimmune reactions.

  • Fights Difficult, Lingering, and Recurrent Infections

    The microbiome’s beneficial bacteria defend the body by competing with pathogens, producing antimicrobials, and modulating the immune system. This prevents the persistence of infectious agents and enhances the immune system’s ability to respond effectively, contributing to overall defense against infections.

  • Manages Food Sensitivities

    Thorough regulation of immune responses and enzyme metabolites produced by probiotics allows Immune μBiomic to reduce unnecessary responses from hard-to-digest foods. It also helps alleviate other intolerances of the digestive system.

  • Manages Cellular Health and Metabolism

    A healthy immune system efficiently regulates cellular replication, ensuring that the body’s cells function correctly. The immune system’s ability to recognize and eliminate abnormal cells, combined with its ability to modulate immune responses, ensures comprehensive protection against both internal threats and external infectious agents.

  • Develops and Manages a Healthy Microbiome

    Promotes a diverse and balanced gut microbiome, which plays a major role in overall health. Imbalances in intestinal microbes can cause dysbiosis and dysfunction in various gut axes (gut-brain, gut-skin, gut-lung, gut-immune, gut-hormone, etc.). These axes rely on a well-balanced microbiome and the health of functioning, undisturbed intestinal cells. Immune μBiomic specifically targets the gut-immune axis, offering a plethora of health benefits.

Exclusive Probiotic Spotlight

This formulation features our own exclusively researched and developed probiotics, known as keystone species. These species are directly related to adverse health effects when missing or lacking in human microbiomes. Through 15 years of research, Alimentum Labs has carefully selected specialized probiotic species, each offering unique benefits for the gut-immune axis and overall immunity.

The nature of our exclusive keystone strains of probiotics grants them a distinctive advantage as they colonize specific niches within the gut where they are intended to thrive. Once established, these anaerobic bacteria tend to persist long-term, providing benefits that set them apart from traditional probiotics.

Keystone Species

Roseburia hominis MS06

Roseburia hominis, a beneficial gut microbe, plays a vital role in our immune system.3 It produces key compounds like butyrate and propionate that support gut health and interact with our genes to regulate immunity.3–5 Specifically, R. hominis enhances genes that affect both the immune functions of the gut and immune cells, including antimicrobial peptides, gut barrier function, toll-like receptors (TLR) signaling, and T-cell biology (CD4, CD25, FoxP3).5 This microbe also contributes to melatonin production, aiding digestion and reducing visceral sensitivity.4 However, in conditions such as irritable bowel syndrome and inflammatory bowel diseases, it is often found in lower amounts.4 When in balance, R. hominis strengthens our gut and immune system.6

Bacteroides uniformis MS03

Bacteroides uniformis, a beneficial gut microbe,7–9 plays a crucial role in producing immune-supporting compounds like butyrate and γ-aminobutyric acid (GABA) through the breakdown of dietary fibers.9 These substances have the remarkable ability to reduce inflammation, fine-tune immune cell activity, and bolster the integrity of the gut lining.9 Early research suggests that B. uniformis can ameliorate immunological dysfunctions and metabolic disorders.10–12 Excitingly, recent studies have unveiled its capacity to foster the growth of other highly beneficial gut bacteria, such as Christensenella minuta and Akkermansia muciniphila, further fortifying our immune health.8

Collinsella aerofaciens MS05

Collinsella aerofaciens is a gut microbe that is often lacking in the human intestinal microbiome. Low populations of this microbe in the gut have been associated with irritable bowel syndrome (IBS) and other symptoms of gastrointestinal distress.13

Bacteroides ovatus MS02

Bacteroides ovatus is a beneficial gut microbe with a unique ability to downregulate receptors that certain viruses use to enter our cells.14 This makes it a key player in our immune defenses. Additionally, it offers other benefits like boosting the production of mucosal antibodies and producing compounds like butyrate and GABA, which can effectively calm an overactive immune system.15–17 As a result, it is suggested that B. ovatus may help alleviate symptoms of inflammatory bowel diseases.18

Anaerostipes caccae MS01

This bacterium is an early colonizer of the human microbiome, beginning in infancy.19 It has been shown to prevent allergic responses to food items like cow’s milk.20 Anaerostipes caccae is known as a powerful cross-feeder and co-partner in helping protect the mucin layer and thereby, the gut.19,21,22 With the help of another powerful and beneficial bacterium within the microbiome known as Akkermansia muciniphila, A. caccae helps upregulate the expression of mucin-degrading genes that are involved in healing the gut lining and fortifying the immune system.22

How Immune µBiomic Works

Scientific research has predominantly focused on understanding the influence of probiotics on immune health to uncover substantial knowledge about how specific probiotic species strongly modulate our immune system. Several strains included in the Immune μBiomic formula have been found to be distinctly symbiotic to humans, offering unparalleled immune benefits and enhanced gut diversity. This formula represents the culmination of ongoing laboratory investigations into the viability of immune-supportive probiotics. In addition to our exclusive strains described above, our unique formula also includes the following indispensable probiotics.

How It Works

Key Ingredients

Lactiplantibacillus plantarum

L. plantarum possesses the capacity to store essential nutrients, vitamins, and antioxidants. Scientific studies have demonstrated that this species also possesses the unique capability to generate L-Lysine, a valuable amino acid.23

Pediococcus pentosaceus

P. pentosaceus produces bacteriocins to inhibit pathogens while preserving the natural flora to help keep the immune-gut axis functioning correctly.24

Lacticaseibacillus rhamnosus GG

L. rhamnosus exhibits exceptional resilience to the acidic conditions typically seen in the stomach and digestive tract.25 It also aids in displacing undesired organisms within the intestines, promoting overall intestinal health while supporting immune regulation and strength.26,27

Limosilactobacillus reuteri

The consumption of L. reuteri has been shown to colonize the stomach, duodenum, and ileum in healthy individuals. This colonization is often associated with significant beneficial modifications of the immune responses within the gastrointestinal lining.28–31

Bifidobacterium lactis HN019

B. lactis enhances individuals’ immune response by boosting the function of immune cells that engulf and destroy pathogens.32,33

Bifidobacterium bifidum SL BB47

B. bifidum is an important microorganism that is often found deficient in the gastrointestinal tracts of adults.34,35 It produces essential B vitamins,36 contributes to maintaining intestinal balance,37–41 and aids in the digestion of dairy products. This can potentially help decrease immune responses to certain foods.

Lactobacillus helveticus L10

L. helveticus promotes defense mechanisms against pathogens,42,43 regulates immune responses,43,44 and influences the composition of the intestinal microbiota in aging populations.

Streptococcus thermophilus St-21

S. thermophilus is reported to be clinically effective in supporting the reduction of uremic toxins within the intestines.45 It is also reported to alleviate intestinal bacterial dysbiosis within the lumen, while enhancing and regulating immune function.46

Bifidobacterium longum

B. longum promotes a robust digestive tract and aids in protecting the microbiome against colonization of undesirable species.47–51

Limosilactobacillus fermentum SBS-1

L. fermentum promotes skin health through educating the immune system and regulating normal inflammatory responses.52

Lacticaseibacillus paracasei Lpc-37

L. paracasei generates biosurfactants capable of disrupting the attachment of pathogenic biofilms to tissues.53

Bifidobacterium infantis SL BI211

B. infantis has been shown to interact with immune cells in the gut, such as dendritic cells and T cells. These interactions can promote a balanced immune response and help the immune system distinguish between harmful pathogens and beneficial microbes.54

Lactobacillus pentosus LPS01

L. pentosus supports the maintenance and integrity of the intestinal barrier by boosting the amount of another highly beneficial bacteria called Akkermansia muciniphila.55 Both L. pentosus and A. muciniphila produce metabolites that are beneficial for our overall well-being.

Saccharomyces boulardii

S. boulardii is a crucial yeast probiotic that helps balance intestinal lining integrity, increase the diversity of intestinal microbes, enhance the barrier function of the mucosa, and modulate immune responses.56,57

Roseburia hominis MS06

Exclusive to Alimentum Labs, Roseburia hominis works to support the immune system by directly interacting with genes that protect and enhance the gut-immune axis.5

Bacteroides uniformis MS03

Exclusive to Alimentum Labs, B. uniformis produces compounds that support the immune system and soothe inflammation in the gut,9 while also encouraging the growth of other beneficial gut microbes.8

Collinsella aerofaciens MS05

Exclusive to Alimentum Labs, C. aerofaciens has been shown to have greatly reduced population levels in people with symptoms of IBS or other gastrointestinal distress.13

Bacteroides ovatus MS02

Exclusive to Alimentum Labs, B. ovatus is able to directly limit the ability of viruses to infect human cells14 and promotes the production of mucosal antibodies in the gut.15,16

Anaerostipes caccae MS01

Exclusive to Alimentum Labs, A. caccae helps prevent allergic responses to cow’s milk20 and interacts with genes that help heal the gut lining.22

Warnings/Contraindications

When used as directed there are no known contraindications for Immune μBiomic.

**It is always recommended that you consult your practitioner prior to adding any new supplement to your regimen if you are pregnant, breastfeeding, experiencing renal failure, undergoing an organ transplant(s), managing diabetes with insulin, or are taking medication(s) for any pre-existing conditions.**

Safety

All ingredients are tested before use for:

  • Pathogenic microbial contaminants
  • Heavy metals and/or chemical contaminants
  • Correct genus and species of probiotic microbes
  • Purity

Additional Information

  • Gluten Free
  • Dairy Free
  • Vegan
  • No Sugar
  • Non-GMO
  • cGMP Facility
  • No Egg

References

  1. Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J. C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12 (1), 184. https://doi.org/10.3390/cells12010184.
  2. Martinez, J. E.; Kahana, D. D.; Ghuman, S.; Wilson, H. P.; Wilson, J.; Kim, S. C. J.; Lagishetty, V.; Jacobs, J. P.; Sinha-Hikim, A. P.; Friedman, T. C. Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Front. Endocrinol. 2021, 12.
  3. Pecyna, P.; Babalska, Z.; Szymendera, K.; Nowak Malczewska, D.; Górna, M.; Jaworska Marcelina, M.; Gabryel, M.; Mańkowska-Wierzbicka, D.; Grzymisławski, M.; Dobrowolska, A.; Tomczak, H.; Chmielewska, M.; Gajęcka, M. Qualitative Identification of Roseburia Hominis in Faeces Samples Obtained from Patients with Irritable Bowel Syndrome and Healthy Individuals. Proceedings 2021, 66 (1), 28. https://doi.org/10.3390/proceedings2020066028.
  4. Song, L.; He, M.; Sun, Q.; Wang, Y.; Zhang, J.; Fang, Y.; Liu, S.; Duan, L. Roseburia Hominis Increases Intestinal Melatonin Level by Activating P-CREB-AANAT Pathway. Nutrients 2022, 14 (1), 117. https://doi.org/10.3390/nu14010117.
  5. Patterson, A. M.; Mulder, I. E.; Travis, A. J.; Lan, A.; Cerf-Bensussan, N.; Gaboriau-Routhiau, V.; Garden, K.; Logan, E.; Delday, M. I.; Coutts, A. G. P.; Monnais, E.; Ferraria, V. C.; Inoue, R.; Grant, G.; Aminov, R. I. Frontiers | Human Gut Symbiont Roseburia hominis Promotes and Regulates Innate Immunity. https://www.frontiersin.org/articles/10.3389/fimmu.2017.01166/full (accessed 2023-11-02).
  6. Tamanai-Shacoori, Z.; Smida, I.; Bousarghin, L.; Loreal, O.; Meuric, V.; Fong, S. B.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Roseburia Spp.: A Marker of Health? Future Microbiol. 2017, 12, 157–170. https://doi.org/10.2217/fmb-2016-0130.
  7. Singh, R. P.; Rajarammohan, S.; Thakur, R.; Hassan, M. Linear and Branched β-Glucans Degrading Enzymes from Versatile Bacteroides Uniformis JCM 13288T and Their Roles in Cooperation with Gut Bacteria. Gut Microbes 2020, 12 (1), 1826761. https://doi.org/10.1080/19490976.2020.1826761.
  8. Gómez del Pulgar, E. M.; Benítez-Páez, A.; Sanz, Y. Safety Assessment of Bacteroides Uniformis CECT 7771, a Symbiont of the Gut Microbiota in Infants. Nutrients 2020, 12 (2), 551. https://doi.org/10.3390/nu12020551.
  9. Benítez-Páez, A.; Gómez del Pulgar, E. M.; Sanz, Y. The Glycolytic Versatility of Bacteroides Uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides. Front. Cell. Infect. Microbiol. 2017, 7.
  10. Dahiya, D. K.; Renuka; Dangi, A. K.; Shandilya, U. K.; Puniya, A. K.; Shukla, P. Chapter 44 – New-Generation Probiotics: Perspectives and Applications. In Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications; Faintuch, J., Faintuch, S., Eds.; Academic Press, 2019; pp 417–424. https://doi.org/10.1016/B978-0-12-815249-2.00044-0.
  11. Lee, H.-B.; Do, M.-H.; Jhun, H.; Ha, S.-K.; Song, H.-S.; Roh, S.-W.; Chung, W.-H.; Nam, Y.-D.; Park, H.-Y. Amelioration of Hepatic Steatosis in Mice through Bacteroides Uniformis CBA7346-Mediated Regulation of High-Fat Diet-Induced Insulin Resistance and Lipogenesis. Nutrients 2021, 13 (9), 2989. https://doi.org/10.3390/nu13092989.
  12. Fabersani, E.; Portune, K.; Campillo, I.; López-Almela, I.; la Paz, S. M.; Romaní-Pérez, M.; Benítez-Páez, A.; Sanz, Y. Bacteroides Uniformis CECT 7771 Alleviates Inflammation within the Gut-Adipose Tissue Axis Involving TLR5 Signaling in Obese Mice. Sci. Rep. 2021, 11 (1), 11788. https://doi.org/10.1038/s41598-021-90888-y.
  13. Malinen, E.; Krogius-Kurikka, L.; Lyra, A.; Nikkilä, J.; Jääskeläinen, A.; Rinttilä, T.; Vilpponen-Salmela, T.; von Wright, A. J.; Palva, A. Association of Symptoms with Gastrointestinal Microbiota in Irritable Bowel Syndrome. World J. Gastroenterol. WJG 2010, 16 (36), 4532–4540. https://doi.org/10.3748/wjg.v16.i36.4532.
  14. Ahmadi Badi, S.; Tarashi, S.; Fateh, A.; Rohani, P.; Masotti, A.; Siadat, S. D. From the Role of Microbiota in Gut-Lung Axis to SARS-CoV-2 Pathogenesis. Mediators Inflamm. 2021, 2021, e6611222. https://doi.org/10.1155/2021/6611222.
  15. Tan, H.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Novel Strains of Bacteroides Fragilis and Bacteroides Ovatus Alleviate the LPS-Induced Inflammation in Mice. Appl. Microbiol. Biotechnol. 2019, 103 (5), 2353–2365. https://doi.org/10.1007/s00253-019-09617-1.
  16. Yang, C.; Mogno, I.; Contijoch, E. J.; Borgerding, J. N.; Aggarwala, V.; Li, Z.; Siu, S.; Grasset, E. K.; Helmus, D. S.; Dubinsky, M. C.; Mehandru, S.; Cerutti, A.; Faith, J. J. Fecal IgA Levels Are Determined by Strain-Level Differences in Bacteroides Ovatus and Are Modifiable by Gut Microbiota Manipulation. Cell Host Microbe 2020, 27 (3), 467-475.e6. https://doi.org/10.1016/j.chom.2020.01.016.
  17. Horvath, T. D.; Ihekweazu, F. D.; Haidacher, S. J.; Ruan, W.; Engevik, K. A.; Fultz, R.; Hoch, K. M.; Luna, R. A.; Oezguen, N.; Spinler, J. K.; Haag, A. M.; Versalovic, J.; Engevik, M. A. Bacteroides Ovatus Colonization Influences the Abundance of Intestinal Short Chain Fatty Acids and Neurotransmitters. iScience 2022, 25 (5). https://doi.org/10.1016/j.isci.2022.104158.
  18. Ihekweazu, F. D.; Fofanova, T. Y.; Queliza, K.; Nagy-Szakal, D.; Stewart, C. J.; Engevik, M. A.; Hulten, K. G.; Tatevian, N.; Graham, D. Y.; Versalovic, J.; Petrosino, J. F.; Kellermayer, R. Bacteroides Ovatus ATCC 8483 Monotherapy Is Superior to Traditional Fecal Transplant and Multi-Strain Bacteriotherapy in a Murine Colitis Model. Gut Microbes 2019, 10 (4), 504–520. https://doi.org/10.1080/19490976.2018.1560753.
  19. Chia, L. W.; Mank, M.; Blijenberg, B.; Aalvink, S.; Bongers, R. S.; Stahl, B.; Knol, J.; Belzer, C. Bacteroides Thetaiotaomicron Fosters the Growth of Butyrate-Producing Anaerostipes Caccae in the Presence of Lactose and Total Human Milk Carbohydrates. Microorganisms 2020, 8 (10), 1513. https://doi.org/10.3390/microorganisms8101513.
  20. Feehley, T.; Plunkett, C. H.; Bao, R.; Choi Hong, S. M.; Culleen, E.; Belda-Ferre, P.; Campbell, E.; Aitoro, R.; Nocerino, R.; Paparo, L.; Andrade, J.; Antonopoulos, D. A.; Berni Canani, R.; Nagler, C. R. Healthy Infants Harbor Intestinal Bacteria That Protect against Food Allergy. Nat. Med. 2019, 25 (3), 448–453. https://doi.org/10.1038/s41591-018-0324-z.
  21. Chia, L. W.; Mank, M.; Blijenberg, B.; Bongers, R. S.; Aalvink, S.; Limpt, K. van; Wopereis, H.; Tims, S.; Stahl, B.; Belzer, C.; Knol, J. Cross-Feeding between Bifidobacterium Infantis and Anaerostipes Caccae on Lactose and Human Milk Oligosaccharides. bioRxiv June 2, 2018, p 336362. https://doi.org/10.1101/336362.
  22. Chia, L. W.; Hornung, B. V. H.; Aalvink, S.; Schaap, P. J.; de Vos, W. M.; Knol, J.; Belzer, C. Deciphering the Trophic Interaction between Akkermansia Muciniphila and the Butyrogenic Gut Commensal Anaerostipes Caccae Using a Metatranscriptomic Approach. Antonie Van Leeuwenhoek 2018, 111 (6), 859–873. https://doi.org/10.1007/s10482-018-1040-x.
  23. Cahyanto, M. N.; Kawasaki, H.; Nagashio, M.; Fujiyama, K.; Seki, T. Construction of Lactobacillus Plantarum Strain with Enhanced L‐lysine Yield. J. Appl. Microbiol. 2007, 102 (3), 674–679. https://doi.org/10.1111/j.1365-2672.2006.03174.x.
  24. Jiang, S.; Cai, L.; Lv, L.; Li, L. Pediococcus Pentosaceus, a Future Additive or Probiotic Candidate. Microb. Cell Factories 2021, 20 (1), 45. https://doi.org/10.1186/s12934-021-01537-y.
  25. Pino, A.; Rapisarda, A. M. C.; Vitale, S. G.; Cianci, S.; Caggia, C.; Randazzo, C. L.; Cianci, A. A Clinical Pilot Study on the Effect of the Probiotic Lacticaseibacillus Rhamnosus TOM 22.8 Strain in Women with Vaginal Dysbiosis. Sci. Rep. 2021, 11 (1), 2592. https://doi.org/10.1038/s41598-021-81931-z.
  26. Petrova, M. I.; Reid, G.; ter Haar, J. A. Lacticaseibacillus Rhamnosus GR-1, a.k.a. Lactobacillus Rhamnosus GR-1: Past and Future Perspectives. Trends Microbiol. 2021, 29 (8), 747–761. https://doi.org/10.1016/j.tim.2021.03.010.
  27. Champagne-Jorgensen, K.; Mian, M. F.; McVey Neufeld, K.-A.; Stanisz, A. M.; Bienenstock, J. Membrane Vesicles of Lacticaseibacillus Rhamnosus JB-1 Contain Immunomodulatory Lipoteichoic Acid and Are Endocytosed by Intestinal Epithelial Cells. Sci. Rep. 2021, 11 (1), 13756. https://doi.org/10.1038/s41598-021-93311-8.
  28. Dargenio, C.; Dargenio, V. N.; Bizzoco, F.; Indrio, F.; Francavilla, R.; Cristofori, F. Limosilactobacillus Reuteri Strains as Adjuvants in the Management of Helicobacter Pylori Infection. Medicina (Mex.) 2021, 57 (7), 733. https://doi.org/10.3390/medicina57070733.
  29. Saviano, A.; Brigida, M.; Migneco, A.; Gunawardena, G.; Zanza, C.; Candelli, M.; Franceschi, F.; Ojetti, V. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus Reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? Medicina (Mex.) 2021, 57 (7), 643. https://doi.org/10.3390/medicina57070643.
  30. Abuqwider, J.; Altamimi, M.; Mauriello, G. Limosilactobacillus Reuteri in Health and Disease. Microorganisms 2022, 10 (3), 522. https://doi.org/10.3390/microorganisms10030522.
  31. Piccioni, A.; Franza, L.; Vaccaro, V.; Saviano, A.; Zanza, C.; Candelli, M.; Covino, M.; Franceschi, F.; Ojetti, V. Microbiota and Probiotics: The Role of Limosilactobacillus Reuteri in Diverticulitis. Medicina (Mex.) 2021, 57 (8), 802. https://doi.org/10.3390/medicina57080802.
  32. Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J. E.; Stuer-Lauridsen, B.; Eskesen, D. Microorganisms | Free Full-Text | The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12®. https://www.mdpi.com/2076-2607/2/2/92 (accessed 2023-11-02).
  33. Maneerat, S.; Lehtinen, M. J.; Childs, C. E.; Forssten, S. D.; Alhoniemi, E.; Tiphaine, M.; Yaqoob, P.; Ouwehand, A. C.; Rastall, R. A. Consumption of Bifidobacterium Lactis Bi-07 by Healthy Elderly Adults Enhances Phagocytic Activity of Monocytes and Granulocytes. J. Nutr. Sci. 2014, 2, e44. https://doi.org/10.1017/jns.2013.31.
  34. Sakurai, T.; Odamaki, T.; Xiao, J. Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants. Microorganisms 2019, 7 (9), 340. https://doi.org/10.3390/microorganisms7090340.
  35. Milani, C.; Duranti, S.; Bottacini, F. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota – PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706746/ (accessed 2023-10-26).
  36. Yoshii, K.; Hosomi, K.; Sawane, K.; Kunisawa, J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front. Nutr. 2019, 6, 48. https://doi.org/10.3389/fnut.2019.00048.
  37. Turroni, F.; Duranti, S.; Bottacini, F.; Guglielmetti, S.; Van Sinderen, D.; Ventura, M. Bifidobacterium Bifidum as an Example of a Specialized Human Gut Commensal. Front. Microbiol. 2014, 5.
  38. Mohamed, S.; Elmohamady, M. N.; Abdelrahman, S.; Amer, M. M.; Abdelhamid, A. G. Antibacterial Effects of Antibiotics and Cell-Free Preparations of Probiotics against Staphylococcus Aureus and Staphylococcus Epidermidis Associated with Conjunctivitis. Saudi Pharm. J. 2020, 28 (12), 1558–1565. https://doi.org/10.1016/j.jsps.2020.10.002.
  39. Chenoll, E.; Casinos, B.; Bataller, E.; Astals, P.; Echevarría, J.; Iglesias, J. R.; Balbarie, P.; Ramón, D.; Genovés, S. Novel Probiotic Bifidobacterium Bifidum CECT 7366 Strain Active against the Pathogenic Bacterium Helicobacter Pylori. Appl. Environ. Microbiol. 2011, 77 (4), 1335–1343. https://doi.org/10.1128/AEM.01820-10.
  40. Bahmani, S.; Azarpira, N.; Moazamian, E. Anti-Colon Cancer Activity of Bifidobacterium Metabolites on Colon Cancer Cell Line SW742. Turk. J. Gastroenterol. 2019, 30 (9), 835–842. https://doi.org/10.5152/tjg.2019.18451.
  41. Bottacini, F.; van Sinderen, D.; Ventura, M. Omics of Bifidobacteria: Research and Insights into Their Health-Promoting Activities. Biochem. J. 2017, 474 (24), 4137–4152. https://doi.org/10.1042/BCJ20160756.
  42. Taverniti, V.; Guglielmetti, S. Health-Promoting Properties of Lactobacillus Helveticus. Front. Microbiol. 2012, 3, 392. https://doi.org/10.3389/fmicb.2012.00392.
  43. Giraffa, G. Lactobacillus Helveticus: Importance in Food and Health. Front. Microbiol. 2014, 5.
  44. Griffiths, M.; Tellez, A. Lactobacillus Helveticus: The Proteolytic System. Front. Microbiol. 2013, 4.
  45. Vitetta, L.; Llewellyn, H.; Oldfield, D. Gut Dysbiosis and the Intestinal Microbiome: Streptococcus Thermophilus a Key Probiotic for Reducing Uremia. Microorganisms 2019, 7 (8), 228. https://doi.org/10.3390/microorganisms7080228.
  46. Roux, E.; Nicolas, A.; Valence, F.; Siekaniec, G.; Chuat, V.; Nicolas, J.; Le Loir, Y.; Guédon, E. The Genomic Basis of the Streptococcus Thermophilus Health-Promoting Properties. BMC Genomics 2022, 23 (1), 210. https://doi.org/10.1186/s12864-022-08459-y.
  47. Freitas, A. C.; Hill, J. E. Bifidobacteria Isolated from Vaginal and Gut Microbiomes Are Indistinguishable by Comparative Genomics. PLoS ONE 2018, 13 (4), e0196290. https://doi.org/10.1371/journal.pone.0196290.
  48. Zhang, C.; Yu, Z.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Colonization and Probiotic Function of Bifidobacterium Longum. J. Funct. Foods 2019, 53, 157–165. https://doi.org/10.1016/j.jff.2018.12.022.
  49. Inturri, R.; Trovato, L.; Volti, G. L.; Oliveri, S.; Blandino, G. In Vitro Inhibitory Activity of Bifidobacterium Longum BB536 and Lactobacillus Rhamnosus HN001 Alone or in Combination against Bacterial and Candida Reference Strains and Clinical Isolates. Heliyon 2019, 5 (11), e02891. https://doi.org/10.1016/j.heliyon.2019.e02891.
  50. Bottacini, F.; van Sinderen, D.; Ventura, M. Omics of Bifidobacteria: Research and Insights into Their Health-Promoting Activities. Biochem. J. 2017, 474 (24), 4137–4152. https://doi.org/10.1042/BCJ20160756.
  51. Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; Lugli, G. A.; Rodriguez, J. M.; Bode, L.; de Vos, W.; Gueimonde, M.; Margolles, A.; van Sinderen, D.; Ventura, M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. MMBR 2017, 81 (4), e00036-17. https://doi.org/10.1128/MMBR.00036-17.
  52. Chen, H.; Li, Y.; Xie, X.; Chen, M.; Xue, L.; Wang, J.; Ye, Q.; Wu, S.; Yang, R.; Zhao, H.; Zhang, J.; Ding, Y.; Wu, Q. Exploration of the Molecular Mechanisms Underlying the Anti-Photoaging Effect of Limosilactobacillus Fermentum XJC60. Front. Cell. Infect. Microbiol. 2022, 12, 838060. https://doi.org/10.3389/fcimb.2022.838060.
  53. Mouafo, H. T.; Sokamte, A. T.; Manet, L.; Mbarga, A. J. M.; Nadezdha, S.; Devappa, S.; Mbawala, A. Biofilm Inhibition, Antibacterial and Antiadhesive Properties of a Novel Biosurfactant from Lactobacillus Paracasei N2 against Multi-Antibiotics-Resistant Pathogens Isolated from Braised Fish. Fermentation 2023, 9 (7), 646. https://doi.org/10.3390/fermentation9070646.
  54. Turroni, F.; Duranti, S.; Bottacini, F.; Guglielmetti, S.; Van Sinderen, D.; Ventura, M. Bifidobacterium Bifidum as an Example of a Specialized Human Gut Commensal. Front. Microbiol. 2014, 5.
  55. Ma, Y.; Hu, C.; Yan, W.; Jiang, H.; Liu, G. Lactobacillus Pentosus Increases the Abundance of Akkermansia and Affects the Serum Metabolome to Alleviate DSS-Induced Colitis in a Murine Model. Front. Cell Dev. Biol. 2020, 8.
  56. Czerucka, D.; Rampal, P. Diversity of Saccharomyces Boulardii CNCM I-745 Mechanisms of Action against Intestinal Infections. World J. Gastroenterol. 2019, 25 (18), 2188–2203. https://doi.org/10.3748/wjg.v25.i18.2188.
  57. Wang, C.; Li, W.; Wang, H.; Ma, Y.; Zhao, X.; Zhang, X.; Yang, H.; Qian, J.; Li, J. Saccharomyces Boulardii Alleviates Ulcerative Colitis Carcinogenesis in Mice by Reducing TNF-α and IL-6 Levels and Functions and by Rebalancing Intestinal Microbiota. BMC Microbiol. 2019, 19 (1), 246. https://doi.org/10.1186/s12866-019-1610-8.